On Novel Fractional Operators Involving the Multivariate Mittag–Leffler Function

نویسندگان

چکیده

The multivariate Mittag–Leffler function is introduced and used to establish fractional calculus operators. It shown that the derivative integral operators are bounded. Some fundamental characteristics of new operators, such as semi-group inverse characteristics, studied. As special cases these novel several already well known in literature acquired. generalized Laplace transform evaluated. By involving explored a kinetic differintegral equation introduced, its solution obtained by using transform. real-life problem, growth model developed graph sketched.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On certain fractional calculus operators involving generalized Mittag-Leffler function

The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...

متن کامل

on certain fractional calculus operators involving generalized mittag-leffler function

the object of this paper is to establish certain generalized fractional integration and differentiation involving generalized mittag-leffler function defined by salim and faraj [25]. the considered generalized fractional calculus operators contain the appell's function $f_3$ [2, p.224] as kernel and are introduced by saigo and maeda [23]. the marichev-saigo-maeda fractional calculus operat...

متن کامل

Multidimensional Fractional Calculus Operators Involving the Gauss Hypergeometric Function

This paper deals with some multidimensional integral operators involving the Gauss hypergeometric function in the kernel and generating the multidimensional modified fractional calculus operators introduced in [8]. Some mapping properties, weighted inequalities, a formula of integration by parts and index laws are obtained.

متن کامل

On the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators

In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...

متن کامل

Some Results Associated with Fractional Calculus Operators Involving Appell Hypergeometric Function

A class of fractional derivative operators (with the Appell hypergeometric function in the kernel) is used here to define a new subclass of analytic functions and a coefficient bound inequality is established for this class of functions. Also, an inclusion theorem for a class of fractional integral operators involving the Hardy space of analytic functions is proved. The concluding remarks brief...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10213991